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Abstract 

 

In this work, we show that raw chess moves can be used for carrying out chess Machine 

Learning (ML) tasks. The natural resource for ML tasks in chess is the chess position. When 

playing chess, one plays according to the position and not according to the moves. In 

addition, position-based features are used in most published works of ML in chess. 

In this work we apply usage of move-based features in 4 areas of chess automation: (1) 

predicting game outcome, (2) predicting human mistakes, (3) determining difficulty of chess 

puzzles, and (4) determining chess themes of chess puzzles (e.g., determining a chess puzzle 

involves a fork which is a tactical chess theme).  

In this work, we show that the raw moves alone can be used to carry out the tasks defined 

above with a high rate of accuracy. For example, determining whether a puzzle involves a 

fork with an 82.1% accuracy rate, and predicting whether a player would find the correct 

move with a 78.2% accuracy rate. In addition, we determine which moves and what moves' 

attributes make the prediction work. For example, to predict the game outcome, we show it is 

enough to use the last few moves played. We also show that, except for the game outcome-

prediction task, a move-based approach is better than a position-based approach. Lastly, we 

derive beneficial chess lessons, such as exposing which correct move sequences are likely to 

be missed. 
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1. Introduction 

1.1 Objective - Use Raw Chess Move Features in Machine Learning 

The purpose of our work is to show that the raw chess moves contain useful information and 

can be used as features in Machine Learning (ML) chess applications. In this work we apply 

the usage of move-based features in four types of applications in chess automation: (1) 

predicting game outcome, (2) predicting human mistakes, (3) determining difficulty of chess 

puzzles, and (4) determining chess themes of chess puzzles (e.g., determining a chess puzzle 

involves a fork which is a tactical chess theme). For these ML applications we would like to: 

(1) show that the raw moves alone can be used to carry out the tasks defined, (2) understand 

which properties of the moves allow the ML application to succeed, (3) compare the 

performance of the move-based approach to a position-based approach, and (4) derive useful 

chess lessons that are beneficial for chess study. 

Using a move-based approach is innovative. The primary resource for carrying out chess 

automation tasks is position rather than moves. When playing chess, position is used rather 

than moves; and, in most documented ML tasks, position-based features are used (See [1]-

[14]). Nevertheless, in this work, we would like to show that, for specific ML tasks, a move-

based approach is more effective.  

We found few works which use move-based features as a primary source for ML tasks. 

Masud et al. [15] describe a move-based model which predicts the game outcome. Presser 

and Branwen [16], Cheng [17], Noever et al. [18], and Toshniwal et al. [19] describe training 

of move-based models which play chess at a novice level. In this work, we suggest several 

improvements to the experiment described by Masud et al. [15] and expand the usage of 

move-based features to more areas of chess automation. 

1.2 Moves Help in Human Play 

Although position contains all information needed to play chess, human players use chess 

moves as a substantial hint. For instance, in simultaneous chess [20], the players are obligated 

to inform the exhibitor of their last move. This implies that the exhibitor uses the move to 

help make a rapid judgment of the position.  

Moves can be viewed as a compressed summary of the position. In an ordinary position, 

many things are occurring: pieces and squares are being attacked, defended, twice attacked, 

pinned, rayed, and so on. Players select a single move that addresses what the player believes 

to be the most important theme in the position. The move played may not be the best move, 

but it reflects how the player sees the position. This means moves add a dynamic aspect, the 

intent. Moves are not only a transition from position to position, they incorporate intrinsic 

information. Our goal is to capture and utilize that information in ML algorithms. 
 

1.3 Work Structure and Results 

Chapter 2 summarizes documented ML applications and other documented chess automation 

applications according to the type of features used, positional or move-based. 

Chapter 3 explains chess concepts, ML concepts, and middleware used in this work.  
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Chapter 4 describes models which predict the game outcome. The ability to predict the 

outcome of terminated games highly depends on the dataset used. When running on the FICS 

dataset [21], the ML model predicted correctly 94% of games. When running on the PGN-

Mentor dataset [22] the model predicted 73.2% of games correctly. These experiments were 

set up similarly to an experiment reported by Masud et al. [15] where an accuracy rate of 

65.6% was reported when running on the ChessOK dataset [23]. In another set of 

experiments, we created models which predict the outcome of live games, reaching an 

accuracy rate of 57% when running on the FICS dataset and 58.5% when running on the 

PGN-Mentor dataset. 

Chapter 5 describes models predicting whether human players would find the correct move in 

positions where only one good move exists. The most successful model reached an accuracy 

rate of 78.2%. 

Chapter 6 describes models used to reverse-engineer calculated attributes of the Lichess 

puzzle database [24]. We describe training of a model which predicts whether a puzzle is a 

difficult puzzle with an 81.1% success rate. We also explain how we create models which try 

to tell whether a chess theme is associated with a puzzle. The method was applied for nearly 

30 chess themes, with an accuracy rate ranging from 57.8% to 97.3%. 

In the chess applications defined in chapters 4, 5, and 6, we show moves can be used as 

features for carrying out the defined tasks. In addition, as described in these chapters, other 

experiments were conducted to compare the performance of the move-based models, to those 

of position-based models, and to understand which attributes of the moves are required for 

the move-based ML models to perform well. 

Chapter 7 summarizes the work, presents conclusions, and suggests ideas for future research. 

Chapter 8 lists the references. 

Chapter 9 is an appendix, which lists chess findings extracted in Chapter 5 and Chapter 6. 
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2. Related Work 

2.1 Machine Learning Applications 

The vast majority of ML applications in chess use position-based features. Furnkranz [1] 

summarizes 10 of the first ML applications, dating back to 1977, all using position-based 

features. David-Tabibi et al. [2]-[4], present evolutionary algorithm applications used to tune 

parameters for a chess engine. Hauptman and Sipper [5], [6] describe genetic programming 

applications creating a chess program that can play endgame positions with less than 3 pieces 

[5] and solve mate-in-N problems [6]. David-Tabibi et al. [7], Oshri et al. [8], Sabatelli [9], 

Sabetelli et al. [10], Silver et al. [11], and McIlroy-Young et al. [12] describe the training of 

an artificial neural network that plays chess. The trained neural networks account for 

AlphaZero [11], Leela [14] and Maia [12], [13], which are known to be the strongest chess-

playing chess engines. McIlroy-Young et al. [12], also describe training a model which 

predicts whether humans would blunder in chess. Our work describes an alternative solution. 

Only a handful of ML applications in chess use move-based features. Masud et al. [15] 

describe a move-based model which predicts the game outcome. Presser and Branwen [16], 

Cheng [17], Noever et al. [18], and Toshniwal et al. [19] describe training of move-based 

transformers which can play chess. The move-based models play chess at a novice level and 

occasionally attempt to make illegal moves.  

A notable phenomenon is the shift from manually crafted features to raw features. In earlier 

works [1]-[6] manually crafted are used, such as Rook attack king file in [3], and is my king not 

stuck in [5]. In later works raw features are used, such as the location of pieces [7]-[13], or the 

move attributes [15]-[19]. Our work blends into this trend and uses only the raw attributes 

incorporated in moves. 

From a usefulness perspective, the position-based models are better, as they account for the 

strongest chess-playing engines. Our work elaborates on the advantages of the move-based 

approach: (1) Moves consume fewer resources than positions, (2) the move-based approach 

performs better in other areas of chess-automation. 

2.2 Information Retrieval Applications 

The field of Information Retrieval (IR) deals with retrieving information from data. Two 

examples of chess IR tasks are (1) searching for positions matching a search criteria and (2) 

finding similar positions. IR and ML both require defining which features best represent the 

problem they come to solve. 

In IR, in contrast to ML applications, moves are more commonly used as a primary resource. 

Costeff [25] developed and described a flexible freeware tool called Chess Query Language 

(CQL) that allows retrieving games based on chess themes. The chess themes in CQL include 

both positional and move-based themes.  

Ganguly et al. [26] and Bizjak [27] tackle the task of automatically finding similar positions. 

Ganguly's solution is based on positional themes, while Bizjak’s solution uses both position-

based and move-based themes.  
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3. Preliminaries 
 

3.1 Chess Move Notation 

The most common method for recording chess moves is the Standard Algebraic Notation 

(SAN). In the SAN method, moves are recorded by indicating the piece moving, the 

destination square, and the existence of capture or check. In English, the uppercase letter K is 

used for a king move, Q for queen, R for rook, B for bishop, N for knight, while no symbol is 

used for pawn moves. The coordinates of the squares are marked using a lowercase letter (a-

h) for the column, and a number (1-8) for the row (See Figure 3.1). For example, Bg5 

represents a bishop moving to the square on the 7th column and 5th row.  

If the move involves a capture, an ‘x’ sign is used between the piece and destination symbols. 

For example, Nxe5 represents a knight capturing a piece on e5.  

 
Figure 3.1 - Square coordinates [28] 

 

In the case of a check, a ‘+’ sign is appended at the end of the move. For example, Qh5+ 

represents a Queen moving to h5 and “giving check”. In the case of a mate, a ‘#’ sign is 

appended at the end of the move. For example, Rh5# represents a Rook moving to h5 and 

mating the opponent king. 

Another common method for recording moves is the Long Algebraic Notation, also known as 

the UCI format. In the UCI format, the starting and ending squares are specified but not the 

piece moving, (e.g., e2e4). The UCI format is commonly used by Chess Engines like 

Stockfish [29]. 
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Figure 3.2 - Stockfish input and output for a given position 

Top: first moves of the game and position reached. 

Bottom: Stockfish input and output. 

Input parameters: Depth and MultiPV. 

Output: (1) Best Move, (2) Evaluation and (3) 2 best PVs. 

Left: Output for depth=4; Right: Output for depth=14. 

Negative evaluation represent Black has an advantage. 

When counting moves, a ‘move’ usually refers to both a “half-move” by one player and a 

response by the other player. For example, a “20 move game” means a game where white 

played 20 moves and black played 20 (or 19) moves. This convention is also reflected in 

chess notation. When numbering the moves, each pair of white-black moves uses a single 

number. For example, in Figure 3.2, 1. d4 d5 represents white moving a pawn to d4 followed 

by black moving a pawn to d5. When a sequence starts with black's move 3 dots are used to 

represent the absence of a white move. For example, 6. ... Qg6 7. Ne2 represents black 

moving the queen to g6 followed by white moving a knight to e2. In the case described in 

Figure 3.2, we know the sequence starts at move 6 of the game. If the move number is un-

known (e.g. we are given only the position), the numbering starts from '1', and a sequence 

like 6. ... Qg6 7. Ne2 is written as 1. ... Qg6 2. Ne2 

In our work, we deviate from the move counting convention and refer to each “half move” as 

a move. A 40-move game in our work is known as a 20-move game in the standard chess 

convention.1 

 
1 We suggest that the counting standard is a misnomer. In the common standard we can have an 
inconsistent and strange looking sentence like "this 20-move game contains 30 bad moves", where 
"20 move" means 40 half-moves, and "30 bad moves" means 30 half-moves. When writing this paper, 
we tried using the standard counting, but this created many inconsistencies  
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3.2 Chess Middleware 

Stockfish is a free and open-source chess engine [29]. We used Stockfish for computing chess 

evaluation of positions and plotting the Principle Variation (PV) for various depths. PV and 

depth are explained below. 

3.2.1 Chess Engine Configurable Parameters: depth and multiPV 

The depth determines the number of half-moves (or ply) to look ahead. Stockfish API gives 

control over the depth parameter. Figure 3.2 demonstrates a case where usage of depth=14 

yields a different move than when using depth=4. When selecting a depth, there is a tradeoff 

to consider: The higher the depth, the more accurate the evaluation, at the cost of more 

computation time. 

The chess evaluation is measured in points and is loosely based on the 1-3-3-5-9 system 

which assesses the value of a Pawn as 1, a Knight and Bishop each as 3, a Rook as 5, and a 

Queen as 9. The computed evaluation refers to the resulting position given that both players 

perform the best moves for a given depth. 

The PV is a sequence of moves that is considered by the chess engine to be the optimal play 

by both players for the given position. Stockfish exposes a Multiple Principle Variation 

(multiPV) parameter which gives control over the number of PVs to show.  

Figure 3.2 shows the output PVs when using mutiPV=2 for a given position. On the left the 2 

best PVs are listed for depth=4. The first PV is evaluated as -1.1 (negative value means black 

has an advantage) and the second as -0.68. According to depth=4 output black should prefer 

playing Bxd3 which yields a better evaluation for him. On the right the 2 best PVs are listed 

for depth=14. The first PV is evaluated as -2.09 and the second as -0.46. According to 

depth=14 output black should play Qg6. Per depth=14 output, the move suggested when 

using depth=4 is only the second-best move. 

3.2.2 Other Chess Middleware 

Other chess-based middleware used were: (1) a Stockfish plugin for python [30], (2) a 

python-chess [31] library, which was used for extracting position and move attributes, and (3) 

fen-to-image [32], an online tool for image diagrams. 

3.3 Methodology 

We define in this work, multiple chess classification tasks and describe various models which 

solve these defined tasks. For all defined tasks, the primary attempt is a ML move-based 

model. We also describe alternative position-based models, for comparison purposes. In 

addition, we make some feature refinement attempts to understand what information within 

the moves is most valuable. For all models we computed the accuracy rate and checked 

whether the initial move-based approach yields a result of statistical significance. 

3.3.1 Statistical Significance 

Our hypothesis is that moves contain useful information which can be used to make 

implications on the chess classification tasks. The null hypothesis is that moves cannot be 

used for chess classification tasks. In all experiments, except the first one, we divide the 

observations evenly between 2 classes. Using this approach, the expected null hypothesis 

accuracy rate is 50%. We define any result in which the model reaches more than a 55% 
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accuracy rate as rejecting the null hypotheses, thus showing that moves do contain useful 

information with statistical significance. 

3.3.2 Computing Accuracy Rate 

For each experiment, we separated the observations between training and testing. The 

training observations were used as the input for the training phase of the generic ML 

techniques (described below). Once the learning phase ended, we use the testing observations 

to compute the accuracy rate: the number of correctly predicted testing observations divided 

by the number of all testing observations. 

The testing observations were not used in any way in the training phase. Some ML 

techniques may separate the input observations, internally, to learning and testing 

observations. We, however, regarded all these observations as 'training observations'. The 

observations defined as 'testing observations' were kept externally and used only when the 

training phase was completed. 

3.3.3 Generic Machine Learning Techniques 

In all ML tasks described in this work, the first step was to map the input observations to an 

n-dimensional numeric vector. In the next step, we applied various ML classifier techniques 

and measured their performance. We used 4 ML classifier techniques: (1) Support vector 

machine (SVM), (2) random forest (RF), (3) naive bayes (NB), and (4) artificial neural 

network (ANN). 

SVM is a supervised binary classification algorithm that seeks to separate observations in an 

n-dimension domain using an n-1 dimensional hyperplane (See Figure 3.3: Separating 

observations in 2-dimensional domain using a 1-dimensional hyperplane). In cases where the 

observations are not separable, the kernel trick is applied, mapping the vectors to a higher 

dimension where they are separable (See Figure 3.4. On the left un-separable observations in 

a 2-dimensional domain. On the right separable observation in a 3-dimensional domain). We 

used scikit-learn [33] C-Support Vector Classification (SVC) implementation of the SVM 

algorithm.  

 

 
Figure 3.3 Support Vector Machine [34]  
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Figure 3.4 - SVM Kernel Trick [35] 

 

RF is an ensemble ML method, combining multiple instances of ML to determine a single 

optimal solution. The RF model is made up of multiple Decision Tree (DT) Classifiers, where 

each DT acts as a separate model, and the final classification is decided based on a majority. 

We used the RandomForestClassifier implementation of scikit-learn.  

In this work, we made use of 2 capabilities exposed by the RF implementation of scikit-learn: 

(1) classification probability and (2) feature importance. The classification probability is 

calculated based on the number of DTs agreeing on the final classification: The more DTs 

agree, the more confident the classification is. The feature importance is computed based on 

the actual usage of the features in the model. In DTs, some nodes are visited more often than 

others. For example, in Figure 3.5, the right node in the second layer is visited only if x₂ is 

more than 5. If in all observations x₂ is equal to or less than 5, the node will never be visited. 

Using the training data, the scikit-learn implementation of a RF checks empirically how often 

each of the features was involved in the classification. Increasing frequency of involvement 

increases the importance of the feature. In the last step, feature values are normalized so that 

all values sum to 1. 

 

 

 
Figure 3.5 - Decision Tree [36] 
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In NB, the features and possible classifications are considered conditional events. Applying 

Bayes theorem, the chain rule, and the “naïve” assumption that the input features are 

statistically independent, an explicit formula is spelled out. We used the GaussianNB 

implementation of scikit-learn. In the Gaussian NB model, the assumption is that the feature 

values associated with each class are distributed according to a normal (or Gaussian) 

distribution. In the training process, the mean and variance of each conditional event of class 

and feature are calculated and form a normal distribution.  

ANN is a collection of connected nodes called neurons, where each node can transmit signals 

to other nodes. In the context of ML, the network comprises a layer of input neurons which 

are activated based on the feature values, an output layer which represents the classes, and 

one or more hidden layers. We used a 3-layer network where the number of nodes in the 

input and output layers were determined by the size of the features and the outcome classes. 

The hidden layer comprised 128 nodes. We used the API of TensorFlow [37], in which we 

had to determine the learning attributes for the learning process. We used the attributes 

advised in the documentation: Sparse Categorical Cross Entropy for the loss function and the 

adam optimizer to determine the learning rate. 

 

 

 
Figure 3.5 - Artificial Neural Network [38] 

In all ML models, we utilized either the default configuration or the configurations advised in 

the documentation. We did experiment with the different optional parameters. For example, 

we attempted to raise the number of DTs in the RF model and use more nodes and more 

sophisticated connections for the ANN model (like Deep Neural Networks and Recurrent 

Neural Networks). These experiments did not yield better results and were therefore not 

adopted in the final analysis. 
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4. Predicting Game Outcome 

This chapter discusses the prediction of game outcomes using raw moves as features. In this 

chapter we: (1) show that raw chess moves contain information that can help predict the 

game outcome, (2) compare the performance of move-based models to position-based 

models, and (3) detect which moves of the game are the most significant for predicting the 

game outcome. 

The starting point of this chapter is the work by Masud et al. [15], who describe the creation 

of ML models that use move-based features and predict game outcomes. In this chapter, we 

focus on the model reported in [15] as most successful. We suggest several improvements to 

the model and suggest using additional heuristic methods to give a deeper insight regarding 

the relation between chess moves and game outcome. 

4.1 Predicting Game Outcome - Masud et al. 

Masud et al. [15] show how moves of a chess game can be used to predict game outcome. 

Nearly 300,000 games from the ChessOK [23] database were used to train and test a ML 

model. An accuracy rate of 65.6% was reached when using Weka’s [39]  J48 algorithm, which 

is an implementation of a Decision Tree (DT) model.2 

4.1.1 Feature Definition 

The ML model in [15] was set as follows: Each game was regarded as an observation, the 

labels were the games’ outcomes (white win, black win, or draw), and the features were the 

moves. Each individual move contributed 4 features: (1) the piece moving (2) the destination 

square (3) an indication whether capture took place, and (4) an indication whether check took 

place. The full feature vector contained all of these features for each move of the game. For 

instance, a 20-move game3 contained 4×20=80 features. These 4 features are exposed in the 

SAN chess notation (See Section 3.1) which is the format used by almost all chess databases. 

A move like Bxh7+ is trivially mapped to: (1) a bishop (B) (2) moving to h7, (3) capturing a 

piece (existence of x), and (4) “giving check” (existence of +). This means computing of 

move-based features is straightforward, as opposed to position-based features which involve 

processing of moves to compute the positions. 

4.1.2 Distribution to Bins 

In [15] the games were divided into categories for training purposes. They were distributed to 

move-length-range “bins” based on their lengths. For instance, a 15-20 move bin included all 

games which ended after at least 15 and at most 20 moves. Each bin was trained and tested 

separately. The maximum game length in each bin determined the number of features for that 

specific model, and the missing moves were filled with null values. For instance, a bin that 

contained games with a length of 15-20 moves used 20×4=80 features. For games of 15 

moves, the first 60 features were populated based on the moves played, with the last 20 being 

filled with null values. Bins were used because the ML techniques used require all feature 

vectors to be of the same size. 

 
2 Masud et al. [15] describe 3 strategies for organizing the features and models, and for each of the 
strategies they applied 4 ML techniques. Here we describe the setup reported as most successful. 
3 To clarify: throughout this work a ‘move’ refers to a single move by white or a single move by black. 
A 20-move game contains 10 moves by white and 10 moves by black. (We need this note because an 
alternative counting convention exists. See Section 3.1). 
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4.1.3 Outcome 

The Masud et al. model reached an accuracy rate of 65.6%. The authors report that when the 

model was applied to live games (i.e. games that have not yet ended), in 31% of correctly 

classified games the correct prediction was achieved 16 moves or more before the end of the 

game.4  

We suggest, the experiment and outcome described suffers from two issues: one regarding 

the statistical evidence, and a second regarding the usefulness of the classifiers. 

4.2 Predicting Game Outcome - “Dummy Classifier” 

The features used in [15] contain a trivial non-chessic feature that significantly reduces its 

complexity: it incorporates which player made the last move in the game. Since the feature 

contains all the moves of the game, it is very easy to tell whether white or black made the last 

move. Given white made the last move, the chances black won are very low, and given black 

made the last move, the chances white won are very low.5  

Consider the following dummy classifier and classifying rule: for every even length game, 

“predict” black won, and for every odd length game “predict” white won. Every game can 

either be of even length or odd length, and can end up in one of 3 outcomes (white win, black 

win, or draw). This results in 6 length-outcome combinations (See Table 4.1). The accuracy 

rate of the dummy classifier is the sum of the percent of even-length games won by black and 

the percent of odd-length games won by white. 

We computed the accuracy rate of the dummy classifier on two datasets of chess games: Free 

Internet Chess Server (FICS) [21] and Portable Game Notation-Mentor (PGN-Mentor) [22]. 

These 2 data collections represent different types of games. The FICS collection comprises 

games played online by all levels of players, while PGN-Mentor comprises games played by 

the strongest players in official tournaments. We did not utilize the ChessOK [23] dataset for 

analysis because it does not offer free access to games. 

As listed in Table 4.1, the dummy classifier reaches an accuracy rate of 92.1% when run on 

the FICS dataset and an accuracy rate of 52.9% when run on the PGN-Mentor dataset.6 

We suggest, that to prove the hypothesis that moves contain information useful for predicting 

game outcome, we need a model which performs better than the dummy classifier. That is, 

the null hypothesis is that ML model ignores the moves, and only uses the odd/even 

encapsulated feature. To show statistical significance, we need to beat the dummy classifier 

by a clear margin (say 5%; i.e., an accuracy rate of 97.1% for FICS and 57.9% for PGN-

Mentor). It is hard to tell whether the 65.6% accuracy rate reported in [15] shows statistical 

 
4 This whole assertion is convolute; it would be simpler to report that the model predicts the correct 
winner 16 moves ahead in ~20% of the time (0.655×0.31~0.2) 
We re-visit this metric in Section 4.4.1. 
5 The last moving player may lose only in case of resignation. That is, a player makes a move, and 
before the opponent's response the player forfeits the game. 
6 The difference in the accuracy rate is not surprising. According the dummy classifier definition, all 
drawn games are predicted incorrectly. As shown in Table 4.1: In the FICS dataset less than 4% of 
games end up in a draw, while in PGN-Mentor the most common outcome of a game is a draw. In the 
chess world it is a known phenomenon that draw is the most common outcome in formal games.  
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significance, because we do not have access to the game outcome chances in the ChessOK 

dataset and therefore cannot compute the dummy classifier "accuracy rate". It is likely the 

ChessOK dataset is similar to that of the PGN-Mentor dataset (and perhaps the results are 

significant), since they both use games of professional players. The dummy classifier exposes 

the fact that the 65.6% reported in [15] is not particularly significant. 

Table 4.1 - Computing dummy classifier accuracy rate per dataset 

For each dataset there are 6 length-outcome possibilities.  

The accuracy rate is computed as the sum of white-odd chances plus black-even chances. 

Source Length White Black Draw Accuracy Rate 

FICS 

odd 47.5% 2.0% 1.9% 
47.5% + 44.6% 

= 

92.1% 
even 2.0% 44.6% 2.0% 

PGN-Mentor 

odd 31.4% 1.7% 22.4% 
31.4% + 21.5% 

= 

52.9% 
even 2.4% 21.5% 20.6% 

4.3 Predicting Game Outcome - Our Experiment 

We ran a similar experiment to the one reported in Masud et al. [15], with some technical 

differences. We ran the experiment on 2 different datasets of games: FICS and PGN-Mentor. 

We used 4 different ML techniques: (1) Support vector machine (SVM), (2) random forest 

(RF), (3) naive bayes (NB), and (4) artificial neural network (ANN). For the SVM, RF, and 

NB we used the API of scikit-learn [33]. The RF learning technique made use of 10 decision 

trees (DTs) and based the classification on the majority. For the ANN we used the API of 

TensorFlow [37]. The ANN learning technique used 1 hidden layer comprising 128 nodes. 

The number of nodes in the input and output layers was determined by the size of the features 

and the outcome classes. See Section 3.3.3 for more information about these techniques. 

4.3.1 Feature Definition 

The features were defined similarly to those in Masud et al. [15] (See Section 4.1.1). Since 

the ML techniques used require the features to contain numeric values only, the piece feature 

were mapped to a 6-dimensional Boolean vector, with each dimension representing a 

different piece. A rook was defined as 100000 (1-True, 0-False), a knight as 010000, a bishop 

as 001000, a queen as 000100, a king as 000010 and a pawn as 000001. The destination 

square feature used 2 numeric values representing the row and column of the square. 

Summarizing the mapping we used, the 4 move attributes map to 10 numeric values: (1) 6 for 

the piece (2) 2 for the square destination (3) 1 for capture indication, and (4) 1 for check 

indication. 

4.3.2 Distribution to Bins 

We adapted the strategy in Masud et al. [15] of separate bins and created a separate classifier 

for each different game length. The Masud et al. classifier covered a range of game lengths. 

In our work, each “range” contained only one game length.  
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We limited the experiment to games that lasted at least 11 moves and no more than 100 

moves. This restriction was forced since each bin includes only games of one game length 

and using too few observations per model causes distortions. The vast majority of game 

lengths lay within this range of moves, so the model covers almost all games. In addition, 

games shorter than 10 moves are often spurious (e.g., online games that were accidentally 

started and dropped immediately); hence, discarding short games also makes sense for 

“chessic” reasons. 

4.3.3 Outcome 

For each dataset, 100,000 games were used for training and 10,000 for testing (See Section 

3.3.2). The classifiers using RF technique performed the best, with a 94% accuracy rate when 

running on the FICS dataset and a 73.2% accuracy rate when running on the PGN-Mentor 

dataset (See Table 4.2 for full results). The difference in accuracy rate is not surprising, it is 

likely the model makes use of the game length (odd/even) hint, boosting up the accuracy rate 

of the model which ran on the FICS dataset. 

As explained above, the null hypothesis for comparison should be the dummy classifier. 

While the FICS trained models are only slightly better than the dummy classifier (94% using 

RF vs. 92.1%), the PGN-Mentor trained models show clear statistical significance (73.2% 

using RF vs. 52.9%).  

Table 4.2 - Predicting game outcome of terminated games using moves as features 

Accuracy rate per dataset and ML technique. 

Dummy classifier as computed in Table 4.1. 

 ANN RF SVM NB “Dummy Classifier” 

FICS 93.9% 94.0% 94.0% 21.4% 92.1% 

PGN-Mentor 70.3% 73.2% 71.8% 22.2% 52.9% 

 

4.4 Predicting Outcome of Live Games 

4.4.1 Masud et al. Results 

Masud et al. [15] applied the trained models on live games, reporting that in 31% of correctly 

predicted games, the correct prediction was reached 16 moves before the game ended. 

Applying the training model on live games is more useful than applying the model on games 

which had already ended, but the outcome is not very convincing: only 20% 

(0.655×0.31=0.2) of games were predicted correctly 16 moves before the end of the game.  

In addition to the low accuracy rate, the method used to predict the live game outcome is not 

optimal. The ML model in Masud et al. uses terminated games for training and then applies 

the trained model to live games. The model would likely perform better if it were trained 

using the same type of observation as tested.  

4.4.2 Predicting Outcome of Live Games - Our Experiment  

We ran a ML experiment using live-games both for training and for testing. A set of moves is 

referred to as the “first X moves” of the game, where “X” is the total number of moves that 
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have occurred up to that point in the game. Each set of “first X moves” of a game was 

utilized as a separate observation. In this style, a 20-move game contributes 20 observations, 

with each observation comprising the full set of moves that have been made up to that point 

in the game: The first observation is the first move, the second observation the first 2 moves, 

the third observation the first 3 moves, and so on. We dropped the “first-X-moves” 

observations for which X was lower than 10, as explained below, such that counting started 

from the 11th move.  

4.4.3 Distribution to Bins  

For each value of X, first-X-move is represented using a different feature vector size. For 

instance, a first-12-move uses 120 values (See feature definition in Section 4.3.1) and a first-

13-move uses 130 values. The ML techniques used require all feature vectors to be of a set 

size. To solve this problem (See Section 4.1.2 and Section 4.3.2 where the same solution was 

applied), we distributed the observations to bins: each first-X-moves were trained and tested 

using its own first-X-moves classifier. For instance, a first-12-moves of a 20-move game, and 

a first-12-moves of a 40-move game were trained and tested in the same bin; while the first-

12-moves, and the first-13-moves of the same game were separated into different bins. We 

only created bins of length of at least 10 moves, and at most 100 moves. For example, we did 

not create first-2-moves or first-110-moves bins. This was done so that results would be 

consistent with, and therefore comparable, to our previous experiment where this restriction 

was forced. 

4.4.4 Balancing Labels 

For the sake of the experiment, draws were removed from the FICS and PGN-Mentor 

datasets so that there would be only 2 outcome classes (white win and black win) and the 

observations were balanced evenly between these 2 classes. For example, when we ran on 

100,000 observations, white won the game in 50,000 cases and black won the game in 50,000 

cases. Because the results were balanced in the resulting dataset, any model that accurately 

predicted the results with over 50% success performed better than a random guess. 

Note that for the live game prediction ML model, only the number of moves played so far is 

known, but not the final game length. This means the model cannot utilize the trivial, non-

chessic, odd/even “hint” in its prediction. (See discussion in Section 4.2) 

4.4.5 Experiments and Outcome 

In the first 3 experiments 100,000, 200,000, and 400,000 games were used for training and 

10,000 games were used for testing. While the SVM framework performed the best, it also 

took the most processing time (1,450 seconds on the 400K sample, on the PGN-Mentor 

dataset) and very extensive memory usage (nearly 2GB). For this reason, the SVM 

framework was not included in the fourth experiment, which used 4,000,000 observations. 

The last experiment size was driven by the PGN-Mentor dataset size. 

As shown in Table 4.3 when using 4M games, the ANN performed the best with a 57% 

accuracy rate obtained on the FICS dataset and a 58.5% accuracy rate obtained on the PGN-

Mentor dataset. The NB performed notably well when considering the time spent in the 

training process (less than a minute). Reaching a 57% and 58.5% accuracy rate provides 

statistical evidence moves can help predict the game outcome (See Section 3.3.1). 
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Table 4.3 - Predicting game outcome of live games using moves as features 

Accuracy rate and time taken (in seconds) to train per dataset, ML technique, and training size. 

    100,000 200,000 400,000 4,000,000 

  Technique Accuracy Time Accuracy Time Accuracy Time Accuracy Time 

FICS ANN 52.7% 35 53.6% 42 55.1% 55 57.0% 458 

NB 53.0% 1 52.7% 1 52.9% 3 54.1% 48 

RF 51.8% 3 52.4% 5 52.4% 13 52.8% 258 

SVM 54.4% 45 54.4% 196 55.8% 965     

PGN-Mentor ANN 53.9% 55 54.1% 56 56.0% 95 58.5% 547 

NB 52.2% 1 53.4% 2 54.2% 5 54.2% 42 

RF 52.4% 4 53.0% 7 55.0% 21 58.7% 266 

SVM 56.5% 70 57.6% 259 58.0% 1450     

4.5 Comparison to Position-Based Models 

We ran 2 position-based experiments to compare to the move-based approach described 

above. Experiments were run first by utilizing an existing chess engine for predicting the 

winner,7 and second by creating a ML model using the raw position content as features. 

4.5.1 Position-Based Approach - Stockfish Model 

The question of which player is most likely to win is related to the question of which player is 

leading. The player who is leading is most likely to win, and the player who is most likely to 

win is more likely to be leading. We can view the game outcome classifier as a proxy for a 

position evaluator. This means we can use a chess engine as an outcome classifier and 

compare the results to the move-trained model. 

Using Stockfish [29] with the depth parameter set to 10 ply (See Section 3.2.1), we analyzed 

50,000 games per dataset. For each position analyzed, a white advantage was regarded as a 

‘white win prediction’, and a black advantage as a ‘black win prediction’. We then compared 

the “predictions” to the actual games' outcomes. For the results to be comparable with the 

previous experiment, we only used evaluation of positions resulting after at least 10 moves 

into the game and up to 100 moves into the game (See Section 4.3.2 and Section 4.4.3). 

 
7 Chess engines use the position as an input, and are therefore regarded as position-based model. 
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Similar to the experiment above, only games that ended with a white or black win were used 

and the games were balanced evenly between the 2 outcomes (See Section 4.4.4).  

The Stockfish model reached an accuracy rate of 65.5% when running on the FICS dataset, 

and 74.1% when running on the PGN-Mentor dataset (See Table 4.4) 

Table 4.4 - Predicting game outcome of live games - comparing different models 

Accuracy rate per dataset and model. 

  FICS PGN-Mentor 

Move-based ML model (ANN) 57.0% 58.8% 

Position-based Stockfish model 65.5% 74.1% 

Position-based ML model (ANN) 51.9% 60.1% 

4.5.2 Position-Based Approach - ML Model 

We ran another position-based ML experiment, using the raw data of the positions. 

Each position reached was regarded as an observation, and the labels were the games’ 

outcomes. Each square on the board was regarded as a feature. Each square was mapped to a 

Boolean vector of size 13, representing the 13 potential values a square can get (6 white 

pieces, 6 black pieces, and an empty square. A white knight for example was mapped to 

0100000000000. This is the same mapping technique for pieces as in Section 4.3.1). Since a 

chessboard comprises 64 squares, each individual observation comprised  

13 × 64 = 832 numeric values. 

Similar to the experiments above, only games that ended with a white or black win were used 

and the games were balanced evenly between the 2 possible outcomes (See Section 4.4.4). 

As in previous ML models, we kept the distribution to bins (See Section 4.1.2 and Section 

4.4.3). The original justification for separate bins was that for each number of moves the 

feature size is different, and therefore not suitable for the ML techniques used. When dealing 

with positions, all positions are of the same size. Nevertheless, to be fully comparable with 

the previous experiment, we kept the distribution to bins. In this setup, all positions resulting 

after X moves were trained and tested separately, and not mixed with positions resulting after 

a different number of moves. Similar to previous experiments, we only used evaluation of 

positions resulting after at least 10 moves into the game and up to 100 moves into the game 

(See Section 4.3.2 and Section 4.4.3). 

100,000 positions were used for training and 10,000 for testing. The ANN framework 

performed the best with 51.9% accuracy on the FICS dataset and 60% accuracy rate on the 

PGN-Mentor. (See Table 4.5). 
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Table 4.5 - Predicting game outcome of live games using positions as features 

Accuracy rate per dataset and ML technique. 

 ANN NB RF SVM 

FICS 51.9% 50.0% 52.1% 50.5% 

PGN-Mentor 60.1% 52.8% 56.6% 60.2% 

 

4.5.5 Advantages of Move Based Model 

The fact the model which uses Stockfish (which is position-based) outperforms the move-

based ML model, shows our model does not offer the world of chess new tools. However, it 

is also impossible to conclude that more information is implied by position than by moves: 

Stockfish evaluation is an offspring of 50 years of Artificial Intelligence (AI) research of top-

notch programmers and chess players, while this move-based model was trained with no 

special chess knowledge. Perhaps the model which uses Stockfish outperforms the ML model 

because of the specialized effort which was invested in it. 

Though the position-based ML model outperformed the move-based model when running on 

the PGN-Mentor dataset, some advantages of the move-based model were apparent. 

Classifying the position-based model was rather resource-consuming, involving much more 

time and memory to process. Compiling 100,000 positions and mapping them to features 

took ~450 seconds8 and consumed 350MB to handle the training feature vectors (before 

involving the ML techniques) while mapping 100,000 game moves to features (which 

compares to ~7M positions) took 15 seconds and consumed 315 MB. These values can 

probably be optimized with some programming effort, yet it demonstrates the built-in 

advantage of using move-based features over position-based features: When using moves 

there is no need to process positions and therefore less runtime and coding involved, and the 

representation of moves is much smaller than positions, thus consuming less memory. 

4.6 Feature Refinement 

The RF model by Scikit-learn API exposes a ‘feature importance’ metric (See Section 3.3.3). 

Using this capability, we measured the importance of the first X moves and last X moves for 

values 1 through 10 on the “live game” move-based model of RF (The experiment described 

in Section 4.4). As shown in Table 4.6, the closer the move is to the given state of the game, 

the higher the impact the move has. The first move impact is about 0.7%-0.8% and the last 

move played (so far) has an impact of 3.6%-4.5%. This means the last moves of the game are 

of the highest importance in the model. 

This raises the question as to how well the model performs when using only the last moves of 

the game. Using the NB framework (which runs fastest) we ran a ‘last X moves’ version of 

the ‘live game prediction’ experiment. The experiment differed from the original experiment 

(Described fully in Section 4.4) only in the number of moves used per observation. In the 

former experiment described above, all moves (played so far) were used, whereas in the “last 

 
8 The times recorded in Table 4.3 refer to the training time and not to the preparation time. This is 
because the preparation is done once for all 4 frameworks, and when possible, the data was 
serialized and re-used in other experiments. 
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X moves” experiment reported here we used only the X most recent moves played. The 

experiment was repeated 10 times, iterating X from 1 to 10. 

Table 4.6 - Feature Importance as exposed in RF model of “live game” prediction 

First Moves Importance  Last Moves Importance 

 First FICS PGN-Mentor  Last FICS PGN-Mentor 

1 0.8% 0.7%  -1 3.6% 4.5% 

2 1.0% 0.9%  -2 3.4% 4.0% 

3 1.6% 1.0%  -3 3.2% 3.7% 

4 1.7% 1.3%  -4 3.1% 3.4% 

5 1.9% 1.4%  -5 3.0% 3.3% 

6 2.1% 1.7%  -6 3.0% 3.1% 

7 2.3% 1.9%  -7 2.9% 3.0% 

8 2.3% 2.1%  -8 2.8% 2.8% 

9 2.5% 2.2%  -9 2.7% 2.7% 

10 2.6% 2.3%  -10 2.6% 2.6% 

As shown in Table 4.7, the model trained using only the last 3 moves obtained a similar 

accuracy rate as the model trained using all the moves.  

Table 4.7 - Predicting game outcome of live games using last-X-moves as features 

The rows are the dataset; the columns are the number of last-X moves used. 

ML technique: NB. Accuracy rate per last-X move. 

  1 2 3 4 5 6 7 8 9 10 ALL 

FICS 52.6% 54.0% 54.6% 55.1% 55.1% 54.4% 55.2% 56.0% 54.9% 55.9% 54.1% 

PGN-Mentor 54.0% 54.2% 54.4% 55.8% 55.9% 56.4% 56.3% 57.1% 56.4% 57.4% 54.2% 
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4.7 Summary 

As shown by the results of ML models that solely rely on raw chess moves, we can conclude 

that (1) Raw chess moves contain implicit information about the game outcome and can help 

tell which player would probably win. (2) The moves played just before the given position 

are more significant than those played earlier in the game.  

This notation can be utilized for extracting useful chess lessons, such as what move 

sequences are most associated with white or black winning the game. 

A notable phenomenon is that the models consistently performed better on the PGN-Mentor 

dataset than on the FICS dataset. This may relate to the PGN-Mentor dataset characteristics: 

The PGN-Mentor dataset contains mature games of professional players playing formal 

games, while the FICS dataset contains blitz games of all levels of players. In mature games, 

the correlation between reaching an advantageous position and winning is stronger. This may 

mean that moves can be used for identifying characteristics of games. In Chapter 7 (Summary 

Chapter) we suggest this as one opportunity for future research. 

In the area of predicting game outcomes, the classic chess engine outperforms the move-

based model. This does not detract from the power of the moves. Positions contain more 

information than moves, and the engine used in prediction is an offspring of over 50 years of 

Artificial Intelligence development. But this means the move-based prediction models have 

no utility in chess research. There are other chess automation tasks for which moves may be a 

valuable predictor, such as whether human players would find the correct move. The next 

chapter shows that in the domain of predicting human play, a move-based model outperforms 

position-based models.  
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5. Predicting Whether Players Would Find the Correct Move 

This chapter discusses ML models using raw moves as features predicting whether human 

players would find the correct move, in positions where only one good move exists.  

In this chapter we: (1) Show that raw chess moves contain information that can help predict 

whether a player will find the correct move, (2) compare the performance of move-based 

models and position-based models, (3) detect which moves and which move attributes are 

most significant for telling whether the correct move will be found, and (4) compile a useful 

chess lesson i.e., lists of move-sequences that players tend to miss. 

McIlroy-Young et al. [12] describe two solutions for the error-predicting task: one using 

position-based model, and another using position and player metadata (e.g. players' ratings). 

The best solutions reach 67.7% and 71.7% accuracy rates respectively. The solution in [12] is 

not fully comparable with the move-based solution described in this chapter since different 

definitions of mistakes are used.  

5.1 Collecting Positions with Only One Good Move 

In the experiments described in this chapter, we were interested in positions in which only 

one good move exists and describe models that can predict whether the only good move 

would be found.  

Using Stockfish [29], we analyzed games downloaded from the FICS database [21] (See 

Section 4.2). For each position, we requested the 2 best Principle Variations (PV) and their 

evaluation scores using a depth of 14 ply (For more information about Stockfish, depth, ply 

and PV see Section 3.2.1). In cases where the difference in scores between the best and 

second-best PV exceeded 1.5 points, we concluded that the position had only one good move 

and was suitable for our experiment. In Figure 5.1 the difference in score between the best 

and second-best moves exceeds 1.5 and therefore we can conclude the position has only one 

good move. 

When calculating the score differences, we considered scores above 5 as a score of 5; this is 

because it is an implicit psychological assumption that, as long as a crushing advantage is 

maintained, it does not matter what move is played.9 

 

 
9 Schematically, in case a player is a queen ahead (9 points), losing a queen would be considered a 
loss of min(9, 5) - 0 = 5 - 0 = 5 points and therefore would be considered a mistake. In case a player 
is a queen ahead, trading it for a rook, (thus converting to a rook ahead advantage; 5 points), would 
be considered a loss of min(9, 5) - 5 = 5 - 5 = 0 points and therefore not considered a mistake. 
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Figure 5.1 - Position with only one good move tagged as "Mistake"  

Parameters: depth=14, multiPV=2. See Section 3.2.1. 

Top Left: Moves played till the critical position.  

Top Middle: Resulting position. Top Right: 2 Principle Variations. 

Bottom Left: Difference in score between  

best and second-best move exceeds 1.5. 

Bottom Middle: Human doesn't play correct move  

Observation tagged as "mistake". 

Bottom Right: 5 before moves and 5 after moves used for features. 

 

5.2 Label and Feature Definitions 

The actual move played in the critical position was compared to the correct move per 

Stockfish. If the move played was the same as the move Stockfish suggested, the observation 

was labeled as ‘correct’, otherwise, it was labeled as ‘mistake’. For example, in Figure 5.1 the 

actual move differed from the correct move, and therefore the observation was tagged as 

'mistake'.  

In most positions extracted from the DB, with only one good move, the correct move was 

found. To keep a balanced ratio between ‘correct’ and ‘mistake’ labels, we discarded excess 

‘correct’ observations. After analyzing nearly half a million positions, we gathered 50,000 

‘correct’ observations and 50,000 ‘mistake’ observations. 

The features were made of the 5 moves played before the critical positions (denoted as 

before moves), and 5 moves which should be played after the critical positions (denoted as 

after moves). The correct move is the first after move (See Figure 5.1). Similarly to the 

experiments described in Chapter 4 (See Section 4.1.1 and Section 4.3.1), for each individual 

move the following features were used: (1) the piece moving (2) the destination square (3) an 

indication whether capture took place, and (4) an indication whether check took place.  

5.3 Experiments and Outcome 

90,000 observations were used for training and 10,000 for testing (See Section 3.3.2). We 

tried 4 ML techniques: Random forest (RF), support vector machine (SVM), artificial neural 

network (ANN), and naive bayes (NB) (See Section 3.3.3).  

The ANN performed the best and reached an accuracy rate of 76.8%, and RF with 76.3% 

accuracy rate. SVM took much longer (nearly half an hour compared to less than 10 seconds 

using the other techniques) and reached 75.7%. Due to the long run time, we dropped the 
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usage of SVM for further refinement experiments. The NB model reached only 69.2% 

accuracy rate but ran very fast. See Table 5.1 for the full results. 

Table 5.1 - Predicting whether a human player finds the best move using moves as features 

Accuracy rate and Time per ML technique. 

ML Technique Accuracy Time (Seconds) 

ANN 76.8% 6.2 

RF 76.3% 1.8 

SVM 75.7% 1785.9 

NB 69.2% 0.1 

 

5.4 Comparison to Position-Based Models 

We ran 2 position-based experiments to compare to the move-based approach described 

above. The first experiment was run by utilizing an existing chess engine for predicting 

whether the correct move would be found, and a second experiment was run by creating ML 

models using the raw position content as features. 

5.4.1 Position-Based Approach - Customized Stockfish Model 

One way to predict whether a human player would find the correct move is to create a 

customized chess engine that mimics human behavior. Given a customized chess engine we 

can define a correct-move classifier using the following rule: if the customized engine finds 

the correct move, predict observation as "correct", otherwise predict observation as 

"mistake". According to this definition the correct classifications (not to be confused with 

"correct" move), are the cases where both engine and human find the correct move, or both 

engine and human fail to find the correct move; all other cases are incorrect classifications. 

The Stockfish API exposes the depth parameter (See Section 3.2.1) which controls the 

number of moves to look ahead. We initially used a customized Stockfish instance using 

depth=14 as an oracle defining which moves are correct. By using a lower depth, we may get 

a customized chess engine with a more human-like behavior, and this customized engine can 

be utilized as a correct-move classifier (as defined in the paragraph above).  

We used 10 customized stockfish instances: each instance was a Stockfish chess engine with 

a specific depth, with a varying depth from 1 to 10. For each customized Stockfish instance, 

we analyzed 2,000 positions, and for each position, we checked whether Stockfish acted like 

the human player. 

For each position the human player either succeeded or failed to find the correct move. 

Similarly, for each position the customized Stockfish instance either succeeded or failed to 

find the correct move. This results in 4 combinations: (1) Human-Mistake, Stockfish-

Mistake, (2) Human-Correct, Stockfish-Correct, (3) Human-Mistake, Stockfish-Correct, (4) 

Human-Correct, Stockfish-Mistake. In cases (1) and (2) the human and Stockfish act alike, 
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and in cases (3) and (4) the human and Stockfish act differently. The accuracy rate of the 

customized stockfish model is the sum of the percent of cases in which Stockfish and the 

human acted alike, i.e. cases (1) and (2). 

Table 5.2 lists the 4 combinations for each customized Stockfish instance according to depth. 

As shown in Table 5.2 the highest accuracy rate was achieved for depth=1 with a rate of 

64.9%, and the accuracy decreased for each additional ply.  
 

Table 5.2 - Computing Customized Stockfish Model accuracy rate per depth  

According to the definition of the Customized Stockfish Model, the accuracy rate is computed as the sum of 

cases (1) Human-Mistake, Stockfish-Mistake, and (2) Human-Correct, Stockfish-Correct. 

 Human-Mistake Human-Correct  

Depth Stockfish- 

Mistake 

Stockfish- 

Correct 

Stockfish- 

Mistake 

Stockfish- 

Correct 

Accuracy 

Rate 

1 16.8% 32.9% 2.2% 48.1% 64.9% 

2 15.1% 34.6% 2.4% 47.9% 63.1% 

3 13.8% 35.9% 4.0% 46.2% 60.0% 

4 12.2% 37.5% 5.1% 45.2% 57.4% 

5 10.3% 39.4% 4.8% 45.5% 55.8% 

6 8.0% 41.7% 3.9% 46.3% 54.3% 

7 5.5% 44.2% 2.4% 47.9% 53.4% 

8 3.2% 46.6% 0.7% 49.6% 52.8% 

9 1.8% 47.9% 0.4% 49.9% 51.8% 

10 1.1% 48.7% 0.3% 50.0% 51.0% 

 

5.4.2 Position-Based Approach - ML Model 

We ran another position-based ML experiment, using the raw information of the positions. 

The features were defined as in Section 4.5.2. We used 90,000 observations for training and 

10,000 for testing (See Section 3.3.2). An accuracy rate of 66.5% obtained when using the 

ANN ML technique. See full results in Table 5.3.  
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Table 5.3 - Predicting whether a human player finds the best move using positions as features 

Accuracy rate per model. 

 NB RF ANN 

Accuracy 55.7% 59.1% 66.5% 

The move-based approach outperformed both position-based approaches. For comparison see 

Table 5.4. 

Table 5.4 - Predicting whether a human player finds the best move - comparing different models 

Accuracy rate per model. 

 Move based (ANN) Position based (ANN) Customized Stockfish (depth=1) 

Accuracy 76.80% 66.50% 64.90% 

5.5 Feature Refinement 

5.5.1 Refining Moves  

The initial experiment used 10 moves as features: 5 before moves and 5 after moves. Using 

the ‘feature importance’ metric exposed in the RF API (See Section 3.3.3) we checked which 

of these moves were most significant. As shown in Table 5.5 the last before move (21.1%), 

and the first after move (15.3%) were significantly more important than the other 8 moves 

involved. 

Table 5.5 - Feature Importance as exposed in RF model predicting whether the best move would be found 

Marked in Bold the 5th before and 1st after which are most important. 

Before-Move Number After-Move Number 

1 2 3 4 5 1 2 3 4 5 

7.2% 7.3% 7.3% 7.8% 21.1% 15.3% 8.3% 9.8% 7.6% 8.3% 

Using the ANN technique (which performed best), we re-ran the experiment using a varying 

number of before and after moves with all permutations using 0 moves to 5 moves. 

(Obviously, we cannot run the experiment with 0 before moves and 0 after moves). As shown 

in Table 5.6, 1-before-1-after permutation reached an accuracy rate of 77.6%, and only 2 

permutations passed this rate with an additional insignificant 0.1%. (See bold text in Table 

5.6). In addition, when using 0 after moves or 0 before moves the accuracy rate drops 

significantly (See italicized text in Table 5.6) 

The results strengthen the conclusion of the ‘feature importance’ experiment above: The last 

before move, and the first after move are the most significant, and all other moves do not add 

to the accuracy rate.  
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Table 5.6 - Predicting whether a human player finds the best move using a varying number of moves 

Accuracy rate per number of moves using ANN ML technique. 

Marked in Bold the accuracy rates in range 77.5%-77.7%. 

Marked in Italic permutations with after=0 or before=0. 

  After 

  0 1 2 3 4 5 

Before 0  68.6% 70.4% 71.1% 71.3% 71.8% 

1 72.1% 77.6% 77.7% 77.3% 76.8% 76.9% 

2 72.3% 77.7% 77.5% 77.5% 77.0% 76.8% 

3 73.0% 77.2% 77.4% 77.2% 77.5% 76.6% 

4 73.0% 76.9% 77.2% 77.2% 77.0% 77.2% 

5 72.7% 77.0% 77.4% 76.3% 77.1% 76.8% 

5.5.2 Refining Move Attributes  

The raw information of each move comprises the following 4 attributes: (1) the piece 

moving, (2) the destination square, (3) an indication whether capture took place, and (4) an 

indication whether check took place. These 4 attributes can be denoted as a SAN 

representation since these are the 4 attributes exposed in the SAN notation (See Section 3.1). 

For example, a move such as Bxh7+ maps to (1) a bishop (B) (2) moving to h7, (3) capturing 

a piece (existence of x), and, (4) “giving check” (existence of +).  

To check which of these attributes are most important, we re-ran the ML experiment, each 

time with different attributes included. Four permutations were of SAN representation 

without a single attribute (piece, destination, check, and capture). In addition, we ran an ALL 

permutation, where we added 2 attributes to the SAN representation: (1) the source square 

(symmetrical to target square), and (2) the captured piece (in case of capture; symmetrical to 

moving piece). We also ran a UCI permutation, where the raw information was the 

information exposed in the UCI Format (See Section 3.1), including the coordinates of the 

source and destination squares, but not including all other attributes that exist in SAN. 

Table 5.7 summarizes the results. The most important results are that (1) the most significant 

attribute is the capture existence, (2) the SAN notation is superior to the UCI notation for 

prediction, and (3) adding more attributes to SAN (i.e. using ALL) is probably better than 

SAN. 
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Table 5.7 - Predicting whether a human player finds the best move using different move attributes 

Using 1 before move and 1 after move. 

Accuracy rate per permutation and ML technique. 

The rows represent the move attributes, the columns represent the ML technique. 

 ANN NB RF 

ALL 78.2% 73.1% 77.3% 

SAN 77.6% 71.9% 76.1% 

SAN_NO_CHECK 77.6% 72.0% 76.0% 

SAN_NO_SQUARE 77.0% 72.0% 77.1% 

SAN_NO_CAPTURE 72.0% 61.0% 73.2% 

UCI 70.2% 58.8% 73.4% 

5.6 Common Move Sequences 

Using the probability metric exposed by scikit-learn for the RF framework, we extracted all 

cases where all 10 Decision trees (DT) agreed on the classification (See Section 3.3.3). 

Reviewing the clear-cut predictions, we looked for 2-move sequences that showed up in 

many observations. 

5.6.1 Top-Correct Sequences 

Among top-correct sequences, the following phenomenon became apparent: there were many 

repeating ‘last before move - first after move’ sequences. (Illustrated example in Figure 5.2). 

Table 5.8 lists the top 40 top-correct sequences.  

 
Figure 5.2–Illustration of 2-move sequences derived from features 

Left: Initial position. Middle: Moves used for features and best move.  

Right: Three examples of derived 2 move sequences. 

The fact that almost all the top sequences include a capture and recapture explains why the 

‘capture’ indication is so crucial. The fact that the most common sequence comprises the last 

before move and first after move can explain why these are the most important features.  
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Table 5.8 – Top-Correct sequences 

Top 40 'last before move - first after move' sequences showing up in RF model where all 10 DTs agree the 

correct move would be found. 

See Figure 5.2 illustrating how a last before move - first after move is derived. 

See Section 3.1 for an explanation about chess notation. 

1. … Bxc3+ 2. bxc3 1. Bxd6 Qxd6 1. Nxd5 exd5 1. … Nxd3 2. Qxd3 

1. Bxg7 Kxg7 1. … Nxe3 2. fxe3 1. Bxf6 gxf6 1. … Bxf3 2. Bxf3 

1. Bxc6+ bxc6 1. … Bxg2 2. Kxg2 1. Bxf6 Bxf6 1. Bxf5 exf5 

1. … Bxd3 2. Qxd3 1. … Nxe4 2. Bxe4 1. … Bxe2 2. Qxe2 1. Bxe5 dxe5 

1. Nxe5 dxe5 1. … Bxf3 2. gxf3 1. … Bxe3 2. fxe3 1. … Nxd4 2. Qxd4 

1. Nxc6 bxc6 1. Bxe7 Qxe7 1. g4 Bg6 1. Nxf7 Kxf7 

1. … Nxc3 2. bxc3 1. Nxe6 fxe6 1. … Nxd4 2. exd4 1. … Bxf3 2. Qxf3 

1. Bxe6 fxe6 1. Bxf7+ Kxf7 1. … g5 2. Bg3 1. … Nxd4 2. cxd4 

1. … Nxe4 2. dxe4 1. Bxc6 bxc6 1. … Bxe4 2. dxe4 1. … b5 2. Bb3 

1. … Bxc3 2. bxc3 1. Nxe5 Bxe5 1. Nxe7+ Qxe7 1. … Bxf4 2. exf4 

 

5.6.2 Top-Mistake Sequences 

The top-correct sequences probably add very little value. What makes them top-correct is the 

fact that even the weakest players find them. In comparison, the top-mistake cases are very 

interesting because they reflect moves which are not found by players, and players should 

learn to be aware of them. 

The most common 2-move sequences in the top mistake positions were ‘first after move - 

second after move’ sequences as well as many ‘first after move - skip - third after move’. 

(Illustrated example in Figure 5.2). Table 5.9 lists the 12 top ‘first after move - second after 

move’ mistake sequences.  
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Table 5.9 - Top Mistake sequences 

Top 12 'first after move - second after move' sequences showing up in RF model where all 10 DTs agree 

the correct move would not be found. 

See Figure 5.2 illustrating how a first after move - second after move is derived. 

See Section 3.1 for an explanation about chess notation. 

1. Bxf7+ Kxf7 1. … Qh4+ 2. g3 1. Qh5+ Ke7 1. … Bxf2+ 2. Kxf2 

1. Qh5+ g6 1. … Qh4+ 2. Ke2 1. … Qa5+ 2. c3 1. Bxf7+ Kd7 

1. Qa4+ Nc6 1. … Qh4+ 2. Kd2 1. Bxa6 Nxa6 1. Qh5+ Kd7 

We elaborate on these sequences in the appendix (Chapter 9). 

5.7 Summary 

The fact we successfully trained ML models that solely rely on raw chess moves, shows that 

raw chess moves contain information about the probability of finding the correct move. We 

have also determined that the only information that is required for predicting whether the 

correct move would be found is the moves adjacent to the critical position: the move before 

the critical position and the correct move itself. We have been able to determine that the 

move attributes exposed by SAN notation are very useful, supporting the decision of FIDE 

(The International Chess Federation) making SAN notation its standard. We have likewise 

determined that the most important attribute of moves, in regard to finding the correct move, 

is the indication of capture. Finally, we have determined that the raw moves played are more 

useful in predicting whether the correct move would be found than the raw data in the 

position itself.  

This chapter and the previous chapters were limited to very specific and well-defined areas of 

chess: game outcome probability, and positions with only one good move. The purpose of the 

next chapter is to expand the usage of raw chess moves to a more general and less objective 

field: predicting difficulty and human defined tactics of chess puzzles. 
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6. Reverse Engineering Lichess Puzzle Database Attributes 

Lichess [40] is a free and open-source internet chess server, used mainly for hosting online 

chess games. Lichess provides various services and features, one of them is an open database 

of puzzles [24]. The database contains over 1.7 million puzzles, generated from over 200 

million analyzed games from the Lichess games database. We chose to work with Lichess 

puzzle DB, as it is large, free, and organized in a systematic manner. 

In this chapter we describe how, by using raw moves, we trained models to reverse-engineer 

the difficulty and chess themes associated with the puzzles. This chapter also compares the 

results to those of a position-based approach and describes how the move-based model can 

help enhance the database. 

6.1 Puzzle Entry Structure and Feature Definition 

Each database entry comprises various fields. We were interested in 4 fields: (1) the starting 

position of the puzzle (2) the solution of the puzzle (i.e. the moves the players are asked to 

find) (3) the puzzle rating (i.e. difficulty), and (4) the chess themes [41] (e.g., a fork is a 

tactical chess theme). Using the position and solution, we would like to predict the difficulty 

and chess theme. Figure 6.1 illustrated the puzzle attributes. 

The actual puzzle, (i.e. the position for which the solution needs to be found), is the second 

move in the puzzle entry. Using the terminology of chapter 5 (See Section 5.1), the first move 

in the database entry is the last ‘before’ move, and the second move and onwards are ‘after’ 

moves. The position in the puzzle was given using the FEN notation [42], and the moves in 

the entry were given using the UCI format (See Section 3.1). After converting the moves to 

SAN format and extracting the position of the puzzle itself (since the position provided is one 

more before the puzzle itself), we have the same structure as in Chapter 5 for both move and 

position features, with 1 before move and several after moves. Figure 6.1 can help understand 

the conversion steps applied to the original DB entry. 
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Figure 6.1 - Puzzle attributes, Input and Output of ML experiments 

Each puzzle entry in the puzzle DB include: 

(1) The position in FEN notation one move before the actual puzzle  

(In figure showing graphical representation). 

 (2) The moves in UCI format one move before the actual puzzle 

(In figure showing in SAN format - see Section 3.1). 

(3) The rating and (4) the themes of the puzzle. 

The experiments in this chapter use the: Actual starting position of the puzzle 

and the before moves and after moves. 

The output of the experiments are the puzzle difficulty and themes. 
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6.2 Computing Puzzle Difficulty  

The puzzle ratings in the Lichess DB were determined using the Glicko rating system [43], 

where each attempt to solve a puzzle was considered as a Glicko rated game between the 

player and the puzzle.  

In the Glicko system, the rating is calculated per game and the winner “takes” points from the 

loser based on the difference in rating between the players. In the case where the player with 

the higher ranking wins the game, few points are transferred, while in the case where the 

lower ranked player wins, many points are transferred. In the case of a draw, points are 

transferred from the higher ranked player to the lower ranked player. The Glicko is an 

improvement over the ELO rating system [44]. Both systems are reliable rating systems and 

are applied in various areas of competitive sports. 

The median ranking in the Lichess DB was 1500. We regarded every puzzle ranked lower or 

equal to 1500 as 'easy', and every puzzle ranked above 1500 as 'difficult'.  

Using ML similar to those applied in previous chapters, we trained models which predict the 

puzzle difficulty using the moves as features. 

6.2.1 Feature Definition 

Similar to the experiments described in chapter 4 (See Section 4.1.1), for each individual 

move the following features were used: (1) the piece moving (2) the destination square (3) an 

indication whether capture took place, and (4) an indication whether check took place.  

In the database, the number of after moves varies per puzzle. Most puzzles are exactly 3 

moves long (70.6%), but some puzzles contain only 1 after move (7.8%) and many puzzles 

contain 5 or more after moves. We ran 3 permutations of experiments: (1) 1-before, 1-after, 

this permutation was appropriate for all puzzle entries. (2) 1-before, 3-after, this permutation 

was not applied to puzzles with only 1-after move. (3) 1-before, 5-after this permutation was 

applied only to puzzles which comprised at least 5 after moves.  

For each feature length we ran the experiment using 3 ML techniques: ANN, RF, NB 

(leaving out SVM which ran too long in previous experiments see Section 4.4.5 and Section 

5.3). We used 100,000 observations for training and 10,000 for testing (See Section 3.3.2). 

The highest accuracy rates were achieved using the ANN framework, with 66% for 1-after, 

71.6% for 3-after, and 81.1% for 5-after. See Table 6.1 for full results. 

Table 6.1 - Puzzle difficulty using moves as features 

Accuracy Rate per ML technique and number of moves used. 

 ANN NB RF 

1-before 1 -after 66.0% 61.2% 63.0% 

1-before 3 -after 71.6% 61.1% 70.8% 

1-before 5 -after 81.1% 64.8% 80.3% 
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6.2.2 Comparison with Position-Based Methods 

We ran 2 position-based experiments to compare to the move-based approach described 

above. The first experiment was run by utilizing an existing chess engine which tried solving 

the puzzles and a second experiment by creating ML models using the raw position content 

as features. 

One way to predict whether a human player with a 1500 rating (see Section 6.2) can solve a 

puzzle is to create a customized chess engine that mimics a 1500 rated human player (The 

reasoning and method described in this section are very similar to the reasoning and method 

described in Section 5.4.1). Given a customized chess engine we can define a difficulty 

classifier using the following rule: if the customized engine finds the correct move, predict 

observation as "easy", otherwise predict observation as "difficult". According to this 

definition the correct classifications are the cases where the engine finds the correct move and 

the puzzle entry is tagged as easy, or the engine fails to find the correct move and the puzzle 

entry is tagged as difficult, all other cases are incorrect classifications. 

The Stockfish API exposes the depth parameter (See Section 3.2.1) which controls the 

number of moves to look ahead. By using a lower depth, we may get a customized chess 

engine with a more human-like behavior, and this customized engine can be utilized as a 

difficulty classifier (as defined in the paragraph above). 

We used 10 customized stockfish instances: each instance was a Stockfish chess engine with 

a specific depth, with a varying depth from 1 to 10. For each customized Stockfish instance, 

we analyzed 2,000 puzzles, and for each puzzle we checked whether Stockfish found the first 

move of the solution.  

Each position entry was considered 'difficult' or 'easy'. And for each position the customized 

Stockfish instance either succeeded or failed to find the correct move. This results in 4 

combinations: (1) Difficult, Stockfish-Mistake, (2) Easy, Stockfish-Correct, (3) Difficult, 

Stockfish-Correct, (4) Easy, Stockfish-Mistake. In cases (1) and (2) Stockfish successfully 

acted as a difficulty predictor. Accordingly, the accuracy rate of the customized stockfish 

model is the sum of the percent of cases (1) and (2). 

Table 6.2 lists the 4 combinations for each customized Stockfish instance according to depth. 

As shown in Table 6.2, the highest accuracy rate was achieved for depth=1 with a rate of 

61.3%, and the accuracy decreased for each additional ply.  
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Table 6.2 - Computing Customized Stockfish Model accuracy rate per depth 

According to the definition of the Customized Stockfish Model, the accuracy rate is computed as the sum of 

cases (1) Difficult, Stockfish-Mistake and (2) Easy, Stockfish-Correct. 

  Difficult 

  

Easy 

  

  

Depth Stockfish - 

Mistake 

Stockfish - 

Correct 

Stockfish -

Mistake 

Stockfish - 

Correct 

Accuracy 

1 18.9% 33.1% 5.7% 42.4% 61.3% 

2 16.1% 35.9% 3.6% 44.5% 60.6% 

3 14.4% 37.6% 2.8% 45.3% 59.6% 

4 12.7% 39.3% 2.7% 45.4% 58.1% 

5 10.8% 41.2% 2.9% 45.2% 56.0% 

6 9.2% 42.8% 2.2% 45.9% 55.0% 

7 6.8% 45.2% 1.8% 46.3% 53.0% 

8 5.4% 46.6% 1.0% 47.1% 52.5% 

9 4.0% 48.0% 0.6% 47.5% 51.5% 

10 2.6% 49.4% 0.4% 47.7% 50.3% 

 

We ran another position-based ML experiment using the raw information of the positions. 

The features were defined as in 4.5.2. We used 100,000 observations for training and 10,000 

for testing (See Section 3.3.2). The highest accuracy rate was obtained when using the ANN 

ML technique: 61.2%. See full results in Table 6.3. 

Table 6.3 - Position Based Experiment.  

Accuracy rate per ML technique. 

 ANN NB RF 

Accuracy 61.2% 56.1% 51.3% 
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The move-based approach clearly outperformed both position-based approaches. For 

comparison see Table 6.4. 

Table 6.4 - Position-based vs. Move-Based 

Accuracy rate per model. 

 Accuracy 

Move based Model (ANN) 1-before 1-after 66.0% 

Move based Model (ANN) 1-before 3-after 71.6% 

Move based Model (ANN) 1-before 5-after 81.1% 

Position based Model (ANN) 61.2% 

Customized Stockfish Model (depth=1) 61.3% 

6.2.3 Possible Usage - Initial Difficulty for New Puzzles 

The existing rating was determined based on the attempts of many puzzle-solvers to solve the 

problem. This means new puzzles have no rating and an easy puzzle can be assigned to a 

strong player, while a difficult puzzle can be assigned to a newcomer. The capability to 

predict a difficulty level can be used as a better starting point for new puzzles. 

6.3 Computing Puzzle Tags 

Each puzzle entry comprises a list of chess themes associated with the puzzle. The themes 

were initially added programmatically based on precisely defined rules. The themes were 

later refined based on user feedback. The database comprises 60 different themes. We 

focused on themes which appeared in at least 2% of all puzzles.  

6.3.1 Categorizing Chess Themes 

The themes can be categorized as: tactical themes, phase of the game, puzzle length, mating 

sequences, and player level (of original game). The themes and categories can be referenced 

in Table 6.5. 

6.3.2 Balancing Observations 

We ran a move-based and position-based ML experiment for each of the themes. For each 

model, we kept the number of observations with and without the theme balanced. For each 

theme we collected up to 50,000 puzzles which were tagged with the theme and 50,000 

without. In case fewer than 50,000 tagged puzzles existed, we used all puzzles with the theme 

and matched them with puzzles without the theme. As in the previous experiment, we used 3 

ML techniques and a varying number of after moves. In all models, 10,000 puzzles were used 

for testing and the rest for training (See Section 3.3.2).  

6.3.3 Results 

The ANN algorithm performed slightly better than the RF, and considerably better than NB. 

Table 6.5 summarizes the result for the ANN algorithm. 
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Table 6.5 - Predicting chess themes 

Accuracy rate using ANN per number of moves used and position-based model. 

Category Theme 1-before 1-after 1-before 3-after 1-before 5-after Position 

Length One Move 66.1%     60.9% 

Length Very Long 59.4% 69.4% 85.7% 59.1% 

Length Short 57.1% 68.8%   52.6% 

Length Long 54.8% 67.9% 94.5% 53.9% 

Mate Mate 83.3% 93.6% 94.6% 70.1% 

Mate Mate In 1 80.0%     69.2% 

Mate Mate In 2 78.8% 91.9%   69.4% 

Mate Mate In 3 74.7% 86.6% 97.3% 73.9% 

Phase Opening 75.6% 79.8% 82.4% 98.0% 

Phase Endgame 71.9% 75.6% 78.4% 99.9% 

Phase Middlegame 66.5% 71.2% 74.8% 97.7% 

Score Advantage 68.8% 71.4% 72.0% 66.0% 

Score Equality 63.1% 62.5% 60.6% 59.1% 

Score Crushing 62.7% 67.1% 68.2% 62.9% 

Source Master 55.3% 57.3% 57.8% 65.3% 

Tactic Rook Endgame 89.2% 94.5% 95.1% 99.2% 

Tactic Back Rank Mate 89.1% 95.4% 96.0% 94.6% 

Tactic Hanging Piece 83.6% 90.7% 89.9% 61.7% 

Tactic Quiet Move 80.9% 85.8% 86.0% 66.6% 

Tactic Advanced Pawn 78.6% 92.5% 91.5% 83.4% 

Tactic Kingside Attack 78.2% 84.2% 83.5% 84.8% 

Tactic Attraction 75.8% 90.1% 91.8% 66.3% 

Tactic Skewer 75.7% 88.6% 80.9% 69.6% 

Tactic Defensive Move 75.5% 88.0% 87.5% 66.2% 

Tactic Discovered Attack 75.2% 85.4% 76.7% 62.4% 

Tactic Fork 74.1% 82.1% 76.7% 65.8% 

Tactic Sacrifice 70.3% 89.4% 89.8% 68.1% 

Tactic Deflection 68.8% 82.3% 75.3% 64.3% 

Tactic Pin 67.0% 71.3% 66.0% 65.8% 
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All puzzles with 'One Move' and 'Mate In 1' themes had only 1 after moves in them (See 

Section 6.2.1), and therefore no value was computed for the 3-after and 5-after experiments. 

Similarly, puzzles with 'Mate In 2' had only 3 after moves in them, and therefore no value 

was computed for the 5-after experiment. The reason no puzzle length existed for these 

themes is because of the ad hoc definition of these themes. For example, 'One Move' theme 

was defined as puzzles with a solution of length 1. 

The results are statistically significant (See Section 3.3.1). The move-based features clearly 

outperform the position-based features for most themes. The exceptions are the ‘phase’ 

category of themes and the tactical themes of "Rook Endgame" and "Kingside Attack". The 

3-after and 5-after categories are roughly the same, but clearly perform better than the 1-after 

setup. Note that 81.1% of puzzles contain exactly 3 after moves (See Section 6.2.1), this 

means the 5-after model cannot be applied to them, thus the 3-after model is more useful.  

6.4 Possible Usage- Finding Errors in Database 

The models described above can be useful in calculating chess themes of puzzles. Seemingly, 

the models do not offer any added value, since the foundation of the puzzle DB already exists 

of code which automatically tags the puzzles. Nevertheless, we argue it is almost impossible 

to define programmatically tactical themes in chess, and therefore the trained ML models 

may serve as an additional layer for cross validation. In this section we describe how the 

models can be used to find puzzles where tactical themes were missed (false-negative, a Type 

2 error) and puzzles that are accidentally tagged with a chess theme but really are not related 

to that tactical theme (false-positive, a Type 1 error).  

We focus only on tactical themes, because non-tactical themes are usually precisely defined, 

and therefore there is no added value calculating them in an alternative manner. For example, 

a puzzle with a theme like 'Mate In One" is precisely defined as a puzzle where the solution is 

one move which results in a mating positions, this is easy to define programmatically. 

The fact the puzzle DB cannot be error free was also known to the puzzle owner. In fact, the 

DB documentation cites that the themes were refined based on user feedback. We suggest a 

more efficient method to find errors in the DB. 

Using the probability feature of RF, we extracted the probabilities of the classifications (See 

Section 3.3.3), and manually checked cases where the model strongly leaned in a direction 

other than the actual tag. We deviated from the previous experiments in 2 ways: (1) We used 

100 DTs (instead of default 10) to get a better probability metric. (2) We kept the original 

ratio between the observations with and without the theme. For example, in this experiment 

only 2% of observations used had the ‘skewer’ theme, while in the previous experiment the 

observations were artificially balanced (See Section 6.3.2). The second change was applied 

because we were interested in a natural prediction as opposed to the previous experiment 

where we were interested in comparing a 50% random guess to accuracy rate obtained using 

the model.  

For each tactical theme, we computed a ML model, and checked the first 100,000 puzzle 

entries to see whether 90% of DTs agreed on the same classification. If the DTs agreed, we 

checked whether the classification matched the actual puzzle-entry tag in the DB.  

We distinguished between 5 groups: (1) Cases where the RF did not lean strongly in one 

direction or another, (i.e., less than 90% of DTs agreed on a specific classification), for these 

cases we did not compare the model prediction to the actual DB entry value. (2) True-
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Negative cases: Model predicts "no tag" and in the DB there is "no tag". (3) True-Positive 

cases: Model predicts "tag" and in the DB the puzzle was tagged. (4) False-Positive cases: 

Model predicts "no tag", but in the database it was tagged. (5) False-Negative cases: Model 

predicts "tag" but in the database there was no tag.  

Table 6.6 lists the number of incidences, in each of the 5 groups above (for the first 100,000 

entries in the DB). As shown in Table 6.6, the contradicting groups, (i.e., groups (4) and (5)), 

account for less than 1% of all cases. 

Table 6.6 - Model with 90% confidence using RF model - Compared to actual tag in database 

For each tactical theme, listing the number of puzzle entries of tag/no-tag per model and database, for first 

100,000 cases puzzles in the database. 

Model Confidence Less than 90% 

Confidence 

Over 90% 

Confidence 

Model Prediction No Tag Tag Tag No Tag 

Puzzle Entry No Tag Tag No Tag Tag 

Tactic      

Back Rank Mate 3375 93740 2755 39 91 

Hanging Piece 6073 93591 221 115 0 

Quiet Move 16111 82910 662 313 4 

Advanced Pawn 8198 87720 3915 167 0 

Kingside Attack 17597 80951 1110 289 53 

Attraction 5567 88192 6031 201 9 

Skewer 3659 95474 625 240 2 

Defensive Move 17171 81957 585 285 2 

Discovered Attack 12022 86964 653 360 1 

Fork 30551 64094 4772 554 29 

Sacrifice 19459 70781 9531 208 21 

Deflection 12310 86056 1259 375 0 

Pin 21228 77735 341 694 2 
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6.4.1 Manual Observations 

For each tactic we manually examined several puzzles in each group. Groups (1), (2) and (3) 

were as expected: The puzzle theme in the database always seemed to be correct. Among 

groups (4) and (5), we found many interesting use-cases. Sometimes, we found obvious 

mistakes of the model, while in other cases it seemed as if there were obvious mistakes in the 

database, and for still other cases it seemed like a subjective call. Since we did not observe 

enough puzzles, and since most times the decision was subjective, it was very hard to 

quantify the number of errors or potential errors found.  

In the appendix (Chapter 9), we describe several contradicting cases, and share our subjective 

insights. 

6.5 Summary 

Raw chess moves can be used to reverse-engineer some of the calculated attributes of the 

Lichess puzzle database. This allows assigning an initial difficulty level to brand new puzzles 

and suggests an efficient method to finding errors in the puzzle tagged themes. For carrying 

out these tasks, the move-based models are more effective than the position-based models. 
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7. Summary and Conclusions 

The raw moves were successfully used as ML features in 4 different areas of chess 

automation: (1) predicting game outcome, (2) predicting human mistakes, (3) determining 

difficulty of chess puzzles, and (4) determining chess themes of chess puzzles. The most 

important conclusion is that moves contain implicit information about the game. In addition, 

it showed how the models can be used to extract useful chess lessons. 

7.1 Results 

For each of the move-based experiments, one or two competing position-based experiments 

were defined and tried. In the area of predicting the game outcome the position-based 

experiments performed better, while for all other tasks the move-based approached yielded 

better results. 

Several feature refinement experiments were tried, using fewer moves than in the initial 

setup, and using attributes of the moves other than the attributes exposed in the SAN notation 

(the commonly used notation). These experiments were deployed to check which moves and 

which attributes of the moves are most significant for carrying out the specified tasks. 

Regarding the question which moves are most significant: the moves closer to the critical 

position proved to be more useful. In the game-outcome prediction models using the last 3 

moves seemed to perform just as well, as when using all the moves of the game. In the 

mistake-prediction models, the adjacent single before move and single after move seemed to 

perform just as well as all 10 surrounding moves. 

Regarding the question which attributes of the moves are most significant, our work shows 

that the attributes used in the SAN notation, are more helpful than those used in the UCI 

format, justifying the adaptation of SAN to be the standard notation. The most important 

attribute for predicting whether the correct move would be found, was the capture indication. 

7.2 Machine Learning Techniques 

We ran multiple ML experiments using 4 different learning techniques: (1) SVM (2) ANN 

(3) RF, and (4) NB (See Section 3.3.3). When running on small datasets, the SVM performed 

well, but when moving to larger datasets the SVM ran slowly, consumed a lot of memory, 

and did not perform better than the RF and ANN models. In terms of accuracy rate, the ANN 

model usually performed slightly better than the RF model, but also took longer to run. The 

RF model included valuable additional information about the experiments, such as the 

probability of the classifications and the 'importance' of the features. The NB performed 

worse than the other models, but its speed was an advantage compared to other models. 

7.3 Future Research 

The work can be extended in at least 3 different directions: (1) extracting more chess lessons, 

(2) extending to more chess-automation areas, and (3) developing better features. 

In this work we demonstrated that useful chess lessons can be extracted from the models. In 

order to truly understand these lessons, time needs to be spent analyzing related positions. 

(As described in the Appendix, Chapter 9). A closer look would result in more questions to 

explore, which would require development of more automatic tools, which in turn would 

require analyzing more phenomena.  

In this work, we covered 4 areas of chess automation. There are other areas of chess 

automation where chess moves can be applied. One example is identifying players, or player 
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characteristics, using chess moves. The experiments in Chapter 4 were tested on 2 different 

datasets of chess games: Professional players in official games and online games of all levels 

of players. The same experiments provided different results on each of these datasets. This 

may show that we can predict what chess collection a game belongs to based on moves. A 

practical use is identifying players cheating in online chess games using a chess-engine as an 

aid. If such behavior can be identified, it could be very helpful. 

In this work we assess various features for ML applications. Though our primary focus is 

move-based features, also position-based features proved useful. It may be even more useful 

if we combine attributes from both resources and create an improved feature. Such an attempt 

can be extended by combining information such as human defined features, or information 

calculated using chess engines. This can help in the quest for creating an ultimate feature 

which can yield higher accuracy rates than those using any feature-type alone.  
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9. Appendix: Chessic Findings Explained 

The purpose of the appendix is to elaborate upon chessic findings resulting from ML 

experiments described in our work. The reasoning in the appendix is subjective, and not 

rigorous as in other parts of this work. The discussion in the appendix is chess-oriented, with 

some references to The Mammoth book of chess by Burgess [45]. 

9.1 Critical Moves Sequences  

Using the RF 'probability' feature, we extracted lists of popular 2-move sequences strongly 

associated with players finding or not-finding the correct continuation (Section 5.6). In the 

top-correct 2-move sequences, there were many last-before-first-after sequences which were 

popular, and among top-mistakes there were many first-after-second-after sequences (and 

also many first-after-third-after, not reported here). 

In this section we outline and show the key characteristics of these popular 2-move 

sequences. 

 

9.1.1 Top-Correct Sequences 

In the top-correct sequences (Table 5.8), the first move is the move before the critical 

position. And the model tells us the chances the correct move (i.e. the second move in the 

sequence) would be found is very high. 

From looking at the top-correct sequences, it is apparently clear why the correct move is 

always found. In 37/40 of the sequences the correct move is an obvious re-capture, and in 

3/40 the correct move is an obvious bishop retreating move after the bishop was threatened. 
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Table 5.8 – Top-Correct sequences (Copied from Chapter 5) 

Top 40 last before move - first after move sequences showing up in RF model where all 10 DTs agree the 

correct move would be found. 

See Figure 5.2 illustrating how a last before move - first after move is derived. 

See Section 3.1 for an explanation about chess notation. 

1. … Bxc3+ 2. bxc3 1. Bxd6 Qxd6 1. Nxd5 exd5 1. … Nxd3 2. Qxd3 

1. Bxg7 Kxg7 1. … Nxe3 2. fxe3 1. Bxf6 gxf6 1. … Bxf3 2. Bxf3 

1. Bxc6+ bxc6 1. … Bxg2 2. Kxg2 1. Bxf6 Bxf6 1. Bxf5 exf5 

1. … Bxd3 2. Qxd3 1. … Nxe4 2. Bxe4 1. … Bxe2 2. Qxe2 1. Bxe5 dxe5 

1. Nxe5 dxe5 1. … Bxf3 2. gxf3 1. … Bxe3 2. fxe3 1. … Nxd4 2. Qxd4 

1. Nxc6 bxc6 1. Bxe7 Qxe7 1. g4 Bg6 1. Nxf7 Kxf7 

1. … Nxc3 2. bxc3 1. Nxe6 fxe6 1. … Nxd4 2. exd4 1. … Bxf3 2. Qxf3 

1. Bxe6 fxe6 1. Bxf7+ Kxf7 1. … g5 2. Bg3 1. … Nxd4 2. cxd4 

1. … Nxe4 2. dxe4 1. Bxc6 bxc6 1. … Bxe4 2. dxe4 1. … b5 2. Bb3 

1. … Bxc3 2. bxc3 1. Nxe5 Bxe5 1. Nxe7+ Qxe7 1. … Bxf4 2. exf4 

 

Figure 9.1 demonstrates the sequence 1. ... Bxc3+ 2. bxc3 where black captures a defended 

knight on c3 and white finds the only good response: recapture on c3. Figure 9.2 

demonstrates the sequence 1. g4 Bg6 where white attacks black's bishop, and black finds the 

correct response: retreat to g6. 

 

 
Figure 9.1 

1. ... Bxc3+ 2. bxc3 
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Figure 9.2 

1. g4 Bg6 

9.1.2 Top-Mistake Sequences 

In the top-mistake sequences, the first move is the best move in the critical position (Table 

5.9). In all these sequences the first move is a move of seizing an initiative. The player who 

should play the move is not threatened, and as the model teaches us, the player rarely finds 

the unusual move, thus missing the opportunity to take the lead.  

Table 5.9 – Top-Mistake sequences (Copied from Chapter 5) 

Top 12 first after move - second after move sequences showing up in RF model where all 10 DTs agree 

the correct move would not be found. 

See Figure 5.2 illustrating how a first after move - second after move is derived. 

See Section 3.1 for an explanation about chess notation. 

1. Bxf7+ Kxf7 1. … Qh4+ 2. g3 1. Qh5+ Ke7 1. … Bxf2+ 2. Kxf2 

1. Qh5+ g6 1. … Qh4+ 2. Ke2 1. … Qa5+ 2. c3 1. Bxf7+ Kd7 

1. Qa4+ Nc6 1. … Qh4+ 2. Kd2 1. Bxa6 Nxa6 1. Qh5+ Kd7 

Figure 9.3 

1. Bxf7+ Kxf7 
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Figure 9.4 

1. Qh5+ g6 

In Figures 9.3 and 9.4 white is not threatened. In Figure 9.3 white needs to “look out of the 

box” to realize Bxf7+ generates a deceive attack (at a temporary cost of a bishop). And in 

Figure 9.4 white needs to realize the not-so-common Qh5+ would force black to lose the 

rook in h8 if black responds with g6 (as in Figure 9.4; alternatively, black can respond with 

Ke7 allowing white a deadly attack on the king). 

We need to remember the model was trained using online-blitz games, with players of all 

levels; The fact the model predicts with 100% certainty that the correct move won’t be found, 

does not reflect the real chance a player would miss the move. It is likely that strong players, 

with more time to think per move would find the correct move in such situations. 

The sequences 1. Qh5+ g6, 1. Qh5+ Ke7 and 1. Qh5+ Kd7 in Table 5.9, reflect 3 playable 

continuations for white’s Qh5+ initiative; and 1. … Qh4+ 2. g3, 1. … Qh4+ 2. Ke2 and 1. … 

Qh4+ 2. Kd2 represent the same chess-motif, with black’s symmetrical Qh4+ initiative. This 

chess motif is the principal theme in the Damiano Defense, (page 113 in [45]). 

Similarly, 1. Bxf7+ Kxf7 and 1. Bxf7+ Kd7 in Table 5.9, reflect 2 playable continuations for 

white’s Bxf7+ initiative; and 1. … Bxf2+ 2. Kxf2 represents the same chess motif, with 

black’s symmetrical Bxf2+ initiative. The Bxf2+ is the underlying plan in the Wilkes-Barre 

Countergambit, (page 145 in [45]). This motif appears often in the opening stage of the game. 

Another example can be in the Modern trap, (see page 167 in [45]). 

9.1.3 Lesson Learn 

The top-correct sequences are not of any added-value. All players find the correct move in 

these cases. The top-mistake sequences are of high value, they reflect commonly missed 

initiatives. Being conscious of these sequences can help players seize an advantage when the 

situation appears in real games. 

9.2 Model and Puzzle DB Contradictions 

In chapter 6 we described how using the ‘probability’ capability of the RF model, we can 

extract puzzles with errors (See Section 6.4).  

The interesting observations are those where the model is very confident of the classification 

but disagrees with the actual value in the database (last 2 columns in Table 6.6). We 

examined multiple puzzles manually and came up with interesting findings. Sometimes, there 

were obvious mistakes of the model. In other cases it seemed like clear errors in the puzzle. 

And, for some cases it seemed like a subjective call. Usually the reasoning for the mismatch 

was clear, in the following sections we would present some examples. 



53 

Table 6.6 - Model with 90% confidence using RF model - Compared to actual tag in database  

(Copied from Chapter 6) 

For each tactical theme, listing the number of puzzle entries of tag/no-tag per model and database, for first 

100,000 cases puzzles in the database. 

Model Confidence Less than 90% 

Confidence 

Over 90% 

Confidence 

Model Prediction No Tag Tag Tag No Tag 

Puzzle Entry No Tag Tag No Tag Tag 

Tactic      

Back Rank Mate 3375 93740 2755 39 91 

Hanging Piece 6073 93591 221 115 0 

Quiet Move 16111 82910 662 313 4 

Advanced Pawn 8198 87720 3915 167 0 

Kingside Attack 17597 80951 1110 289 53 

Attraction 5567 88192 6031 201 9 

Skewer 3659 95474 625 240 2 

Defensive Move 17171 81957 585 285 2 

Discovered Attack 12022 86964 653 360 1 

Fork 30551 64094 4772 554 29 

Sacrifice 19459 70781 9531 208 21 

Deflection 12310 86056 1259 375 0 

Pin 21228 77735 341 694 2 

9.2.1 Clearly Missing Tag 

According to the puzzle documentation [41], a King Side Attack is “An attack of the 

opponent's king, after they castled on the king side”. We found many cases where this was 

the case, but the tag was missing. For example, the solution of a chess puzzle in Figure 9.5 

matches the definition, but the puzzle entry was missing the tag.  
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Figure 9.5 

1. ... Ne2+ 2. Kh1 Qxh2+ 3. Kxh2 Rh5# 

Model: Tagged as King Side Attack 

Entry in DB: No tag 

9.2.2 Definition Dependent 

In the puzzle DB [41], a “Back Rank Mate” is defined as a “Checkmate the king on the home 

rank, when it is trapped there by its own pieces”. This definition differs from the definition in 

[45] (page 454): “A simple mating idea in which a rook or queen checks a king along its first 

rank, and, thanks to the presence of a row of pawns along the second rank, it is also mate”. 

Here we show one potential false-positive and one potential true-negative.  

Figure 9.6 shows the final state of a puzzle not tagged as ‘Back Rank Mate’. In the mating 

positions, black rook "gives check" along the first rank, and due to the presence of 2 white 

pawns in the second rank, and the fact the square h2 is attacked, it is mate. We think this fits 

with the second definition, but maybe not intended to be covered by the first definition since 

the king is not fully trapped by its own pieces. 
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Figure 9.6 - Back Rank Mate  

Model: Tagged as Back Rank Mate 

Entry in DB: No tag 

While the example in Figure 9.6 is debatable, Figure 9.7 demonstrates a clear difference 

between the definitions. Figure 9.7 is a final state of a puzzle tagged as ‘Back Rank Mate’. In 

the position, the king is on the home rank and trapped by its own pieces, but it is not checked 

by a rook or queen.  

 
Figure 9.7 - Back Rank Mate 

Entry in DB: Tagged as Back Rank Mate 

Model: No tag 

We incline toward considering these cases as mistakes in the puzzle DB, since the underlying 

themes of Figure 9.6 are very similar to most ‘Back Rank Mate’ puzzles, while the 

underlying themes of Figure 9.7 are not similar to most ‘Back Rank Mate’ puzzles. 

9.2.3 Chess Theme Present with no Impact 

In the puzzle DB [41] a fork is defined as “A move where the moved piece attacks two 

opponent pieces at once”. In Figure 9.8 after the first move the black queen is attacking 2 

pieces, the king on g1, and the loose bishop on b2, but this clearly is not the intention of the 

puzzle. The next move by white neglects the loose bishop and continues with a forced mate 

sequence (capturing the bishop would actually let white win the game immediately). Since 

there is no intention of taking advantage of the fork, we think this position should not be 

tagged as a fork theme. 
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Figure 9.8 - Fork 

1. ... Qf2+ 2. Kh1 Qf1+ 3. Rxf1 Rxf1# 

Entry in DB: Tagged as Fork 

Model: No Fork 

 

9.2.4 Summary 

All 4 examples show potential mistakes in the puzzle database. By utilizing the ‘probability’ 

capability of the RF model it was very easy to find such potential mistakes. In 3 out of 4 

examples it also seems clear what caused the error in the DB. These examples also show how 

difficult it is to define chess themes using code, magnifying the fact that using the RF model 

based on move-based features as a cross-validation model may be very useful. 
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 תקציר 

 

שניתן להשתמש במהלכי השחמט הגולמיים בתור מאפיינים במשימות למידה  בעבודה זה אנו מראים 
מאפיינים המבוססים על עמדות.   םחישובית בשחמט. המשאב הטבעי עבור בעיות למידה חישובית ה

כל המחקר הקיים  בכעיקרון, כשמשחקים שחמט מתייחסים לעמדה ולא למהלכים. למעשה, כמעט 
 .  ותד מאפיינים נגזרו מתוך העחישובית בשחמט, המהבתחום הלמידה 

בארבעה תחומים של אוטומציה   ,מהלכים  ם עלמבוססיהבעבודה זו אנחנו משתמשים במאפיינים  
( קביעת  4) ,( קביעת רמת קושי של חידות3( חיזוי טעויות אנושיות, )2( חיזוי תוצאת המשחק, )1בשחמט: )

י טקטי של  אמוטיבים שחמטיים של חידות )לדוגמא, קביעה שחידה שחמטאית כוללת מוטיב שחמט
 (.  מזלג

בעזרת המהלכים )בלבד( עם אחוזי   לעילשהוגדרו   בעבודה זו אנחנו מדגימים שניתן לבצע את המשימות
דיוק   78.2%נבא עם ול,  מזלגשחידה שחמטאית כוללת דיוק  82.1%עם לדוגמה, לזהות  .דיוק גבוהים

אילו מהלכים ואילו תכונות של   מכריעיםבנוסף בעבודה זו אנחנו  . ששחקן ימצא את המהלך הנכון
  יקמספאנחנו מראים ש לדוגמה, על מנת לחזות את תוצאת המשחק  .המהלכים מאפשרים את החיזוי
משחק,  -תוצאת-בתחום חיזויחוץ מאשר מראים שבעבודה גם . ששוחקו להשתמש במהלכים האחרונים

מאפיינים  שימוש במניב תוצאות טובות יותר מאשר השימוש במאפיינים המבוססים על מהלכים  
אילו מהלכים    מגליםגוזרים שיעורי שחמט מועילים, למשל בעבודה  ,לבסוף.  עמדותהמבוססים על  

 שחקנים נוטים להחמיץ. 
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 תודות 
 

 ברצוני להודות למנחים שלי, 
 מיריי אביגל  ד"ר ברנבוים ופרופ' לאוניד 
 וההנחיה לאורך כתיבת התזה  ותעל הפגישות הפורי 

 

 ברצוני להודות 
 למרליאנה פריסטלר ואנדרו פריסטלר 

 על השיתוף בהערות המועילותעל עבודת ההגהה ו
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 האוניברסיטה הפתוחה 
 למתמטיקה ולמדעי המחשב  המחלקה

 

 

 

 

 שימוש במהלכים גולמיים  
 ביישומי למידה חישובית בשחמט

 

 

 

 

 

 

 

 עבודת תזה זו הוגשה כחלק מהדרישות  
 במדעי המחשב  .M.Scלקבלת תואר 

 האוניברסיטה הפתוחה 
 מדעי המחשב ל למתמטיקה ו   המחלקה

 

 

 

 
 

 

 ידי -על
 מרדכי גורן 

 

 

 

 

 

 העבודה הוכנה בהדרכתם של  
 מיריי אביגל וד"ר   פרופ' לאוניד ברנבוים
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